Supporting Information

Sprouse et al. 10.1073/pnas. 0801901105

B Individual FRAP curves and averaged intensity

C Comparison of averaged FRAP curves

Fig. S1. Generation of FRAP data. (A) Images of nuclei before and after photobleaching a $0.7-\mu \mathrm{m}$ spot, indicated by the red circle, with a single bleach pulse. Images are shown for TBP-YFP in a mot1 cell. All FRAP data were normalized by the average intensity measured from a spot within the imaged strip that was of the same size and relative positioning as the spot where the intentional photobleach was performed. This corrects for bleaching caused by imaging and also any influx of fluorescence into the strip from regions beyond it. (B) Individual TBP FRAP curves are not smooth, with fluctuations in intensity caused by the low intensity levels of fluorescence and drift of the specimen in and out of focus. Points from 10 different individual FRAP curves are superimposed here to indicate the spread of data. The average FRAP curve from these 10 individual curves is shown with the solid line. (C) FRAP curves are the result of averaging $30-100$ individual curves. These averages are robust as seen by comparing averages of subpopulations. Shown in red is the average of the first 50 TBP curves and shown in blue is the average of the remaining 50 TBP curves. Note that each of the subaverages is close to the total average curve (dotted gray line).

A ACE1: FRAP with different model fits

B TBP: FRAP with different model fits

C Two component fits of TBP FRAP

	Fast fraction		Slow fraction	
	Size	Rate	Size	Rate
TBP taf	$84 \pm 5 \%$	9.1 ± 1.6	$16 \pm 5 \%$	0.61 ± 0.18
TBP WT	$64 \pm 2 \%$	9.4 ± 1.1	$36 \pm 2 \%$	0.38 ± 0.04
TBP bur6	$66 \pm 2 \%$	7.4 ± 0.7	$34 \pm 2 \%$	0.22 ± 0.03
TBP $\operatorname{mot1}$	$34 \pm 1 \%$	7.0 ± 1.0	$66 \pm 1 \%$	0.17 ± 0.01

Fig. S2. One- and two-component fits to FRAP data. (A) Most FRAP curves are well fit by a one-component model. Shown here is the FRAP for Acel fit by a one-component (black line) and a two-component model (red line). The improvement with two components is marginal, as also demonstrated by the residual plots. (B) Some FRAP curves are better fit by the two-component model as illustrated here for TBP. Note the improvement in the residuals plot. (C) When the TBP curves in WT and mutant backgrounds are fit with the two-component model, the most significant changes are seen in the fraction sizes. These change dramatically for the taf1 and mot1 backgrounds, but not for bur6. See Materials and Methods for the equations for the one- and two-component models, described there as frap_1(t) and frap_2(t).

Fig. S3. Quantitation of TBP-YFP and TBP V71R-YFP by fluorescence intensity. The fluorescence intensity of the nucleus for the indicated tagged strain in WT cells was tested for ≈ 10 cells. Measurements were taken from the brightest focal plane using identical imaging conditions in all cases. Error bars indicate the SEM.

A FRAP of different subunits of Pol II

B Rpb1: FRAP with different model fits

C Summary of two component fits

	Fast fraction		Slow fraction	
	Size	Rate	Size	Rate
Rpb1	$38 \pm 2 \%$	4.9 ± 0.9	$62 \pm 2 \%$	0.20 ± 0.01
Rpb4	$27 \pm 3 \%$	4.2 ± 1.5	$73 \pm 3 \%$	0.19 ± 0.01
Rpb11	$20 \pm 2 \%$	11 ± 4.4	$80 \pm 2 \%$	0.29 ± 0.01

Fig. S4. FRAP of Pol II components and model fits. (A) Shown are the FRAP curves for three different Pol II components. (B) As illustrated here for Rpb1, the one-component fits to these data consistently undershoot and then overshoot the FRAP data, as also demonstrated in the residuals plot. (C) The estimated parameters from these two-component fits suggest that Rpb1, Rpb4, and Rpb11 exhibit rather similar, although perhaps not identical, kinetics.

Table S1. FRAP strain list

Strain name	Construct	Genotype	Source
YTK597	YFP-NLS WT	```MAT a/\alpha, mot1\Delta::TRP1::YFP-NLS-TRP1-HIS3/ mot1\Delta::TRP1::YFP-NLS-TRP1-HIS3, pAV20 (MOT1+, LEU2)```	This study
YTK598	YFP-NLS mot1	```MAT a/ \alpha, mot1\Delta::TRP1::YFP-NLS-TRP1-HIS3/ mot1\Delta::TRP1::YFP-NLS-TRP1-HIS3, pMOT221 (mot1-42, LEU2)```	This study
YTK319	Ace1-GFP WT	MAT a/ α, his $3 \Delta 1 /$ his $3 \Delta 1$, leu2 $20 / l e u 2 \Delta 0$, ura3 $30 /$ ura3 $\Delta 0$, met15 40)/+, + +/lys2 20 , ace1د::kanMXIace1s::kanMX, TRP1::TRP1-GPD-ACE1-GFP-HIS3	This study, T. Karpova
YTK610	Ace1-GFP mot1	MAT a/ α, his3 $\Delta 1 / h i s 3 \Delta 1$, leu2 $\Delta 0 / l e u 2 \Delta 0$, ura3 $\Delta 0 /$ ura3 00 , met15 $\Delta 0$)/+, +/lys2 20 , ace1s::URA3/ace1 $\Delta:: U R A 3$, mot1 $::$ kanMXImot1 $\Delta:: k a n M X$, TRP1::TRP1-GPD-ACE1-GFP-HIS3, pMOT221(mot1-42, LEU2)	This study, T. Karpova
YTK580	TBP-YFP WT	MAT a/ α, mot1 $\Delta:: T R P 1 / m o t 1 \Delta:: k a n M X$, TBP-YFP-SpHIS5/TBP-YFP-SpHIS5 pAV20 (MOT1+, LEU2)	This study
YTK581	TBP-YFP mot1	MAT a/ α, mot1 $\Delta:: T R P 1 / m o t 1 \Delta:: k a n M X$, TBP-YFP-SpHIS5/TBP-YFP-SpHIS5 pMOT221 (mot142, LEU2)	This study
ROSY81	TBP-YFP bur6	MAT a/ α, bur6-1/bur6-1, TBP-YFP-SpHIS5/TBP-YFP-SpHIS5	This study, derived from mating with GY561: MATa, his4-912d, lys2-128d, suc2duas(-1900/-390), ura3-52, leu2D1, bur6-1 (1)
ROSY134	TBP-YFP taf1	MAT a/ α, taf145-2/taf145-2, TBP-YFP-SpHIS5/ TBP-YFP-SpHIS5	This study, derived from mating with YSW93:MAT a, TRP1, ura3-53, taf1454::LEU2, pRS313-taf145ts-2 (2)
ROSY53	TBP(V71R)-YFP WT	MAT a, mot1A::TRP1, ade5a::natMX, pTBP-V71R-YFP-HIS3, pAV20 (MOT1+, LEU2)	This study, pTBP-V71R derived from pTSK274 (3)
ROSY54	TBP(V71R)-YFP mot1	MAT a, mot1A::TRP1, ade5s::natMX, pTBP-V71R-YFP-HIS3, pMOT221 (mot1-42, LEU2)	This study, pTBP-V71R derived from pTSK274 (3)
ROSY171	TAF1-YFP WT	MAT a/ α, mot1 $::$ TRP1/mot1 $::$ kanMX, pAV20 (MOT1+, LEU2), ade5s::natMXIade5s::natMX, TAF1-YFP- SpHIS5/TAF1-YFP-SpHIS5	This study
ROSY172	TAF1-YFP mot1	MAT $\mathrm{a} / \alpha, \operatorname{mot} 1 \Delta:: T R P 1 / \operatorname{mot} 1 \Delta:: k a n M X$, pMOT221 (mot1-42, LEU2), ade5s::natMXIade5s::natMX, TAF1-YFP-SpHIS5/TAF1-YFP-SpHIS5	This study
ROSY114	TFIIB-YFP WT	MAT a/ α, mot1 $::$ TRP1/mot1 $\Delta:$ kanMX, TFIIB-YFP-SpHIS5/TFIIB-YFP-SpHIS5, pAV20 (MOT1+, LEU2)	This study
ROSY115	TFIIB-YFP mot1	MAT a/ α, mot1 $\Delta:: T R P 1 / m o t 1 \Delta:: \operatorname{kanMX}$, TFIIB-YFP-SpHIS5/TFIIB-YFP-SpHIS5, pMOT221 (mot1-42, LEU2)	This study
ROSY83	Mot1-YFP	MAT a/ , Mot1-YFP-SpHIS5/Mot1-YFP-SpHIS5	This study
YTK544	GFP-Rpb1	MAT a, his3 31 , leu2 $\Delta 0$, met15 $\Delta 0$, ura3 $\Delta 0$, GFP-Rpb1-SpHIS5	This study, T. Karpova

[^0]
[^0]: All strains except YTK319, YTK610, and YTK544 are derivatives of YPH499 or YPH500: MAT a or α, ura3-52, lys2-801, ade2-101, leu2- $\Delta 1$, his3- $\Delta 200$, trp1- $\Delta 63$ (4).

 1. Prelich G (1997) Saccharomyces cerevisiae BUR6 encodes a DRAP1/NC2 α homolog that has both positive and negative roles in transcription in vivo. Mol Cell Biol 17:2057-2065.
 2. Walker SS, et al. (1997) Yeast TAF(II) 145 required for transcription of $\mathrm{G}_{1} / \mathrm{S}$ cyclin genes and regulated by the cellular growth state. Cell 90:607-614.
 3. Karpova TS, et al. (2008) Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 319:466-469.
 4. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast hosts designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
