GENESDEV/2011/166025 Hyland_Fig S1

Figure S1. The classification of genes up-regulated by K42A as a percentage of all genes affected in broad gene ontology (GO) terms. The entire yeast genome is similarly analyzed as shown as a comparison.

A The crystal structure of the *S. cerevisiae* crystal nucleosome (White *et al* 2001 *EMBO* 20 5207-5218) highlighting histone H3 residues positioned at the DNA entry and exit points. (Pro38=blue, His39=cyan, Arg40=magenta, Tyr41=orange. Lys42=green, Pro43=yellow) Generated using PYMOL. **B** Strains harboring wither wild-type (WT) or the indicated mutation in histone H3 were plated with an initial OD A600 0.5, and serially diluted five fold on SC-URA as a growth control and SC+200 μ g/ml 6AU to detect transcriptional defects. *ppr1* Δ is used as a positive control in this assay. *in the presence of WT histone H3. **C** Quantitative RT-PCR analysis of the expression of 3 genes in strains expressing the indicated H3 mutation. Data are presented as fold change over wild-type.

Figure S3. Lack of a genetic interaction between *spt6-1004* **and H3 K42A**. (A) Strains with the indicated genotype were plated on YPD as in figure 2b and incubated at 4 different temperatures as indicated. Plates at 37°C and 39°C were incubated for 3 and 4 days respectively. (B) Detection of mRNA length changes. RNA was extracted from strains with the indicated genotype at the indicated temperature, and used to probe a DNA tilling array of the yeast genome. mRNA length changes were categorized into four classes, those arising from 3' extensions, 5' truncations, 3' truncations and 3' extensions events and the number of transcripts in each class is shown.

	GENESDEV/202	11/
Bos taurus	ARTKQTARKSTGG-KAPRKQLATKAARKSAPATGGVKKPHR-YRPGTVALREIRRYQ 55	,
Homo sapiens	ARTKQTARKSTGG-KAPRKQLATKAARKSAPATGGVKKPHR-YRPGTVALREIRRYQ 55 100025	
Xenopus laevis	ARTKQTARKSTGG-KAPRKQLATKAARKSAPATGGVKKPHR-YRPGTVALREIRRYQ 55 Hvland Fig S	34
Arapodopsis thaliana	ARTKQTARKSTGG-KAPRKQLATKAARKSAPATGGVKKPHR-FRPGTVALREIRKYQ 55	
C. elegans	ARTKQTARKSTGG-KAPRKQLATKAARKSAPASGGVKKPHR-YRPGTVALREIRRYQ 55	
Plasmodium falciparum	ARTKQTARKSTAG-KAPRKQLASKAARKSAPISAGIKKPHR-YRPGTVALREIRRYQ 55	
Saccharomyces cerevisiae	ARTKQTARKSTGG-KAPRKQLASKAARKSAPSTGGVKKPHR-YKPGTVALREIRRFQ 55	
D. discoideum	ARTKQTARKSTGA-KVPRKHIGSKQAHKQTPVSSSSGGVKKVHR-FRPGTVALREIRKYQ 58	
Giardia lamblia	ARTKHTARKTTSATKAPRKTIARKAARKTASSTSGIKKTGR-KKQGMVAVKEIKKYQ 56	
Tyrpanosoma bruceii	SRTKETARTKKTITSKKSKKASKGSDAASGVKTAQRRWRPGTVALREIRQFQ 52	
	:***.***. :* : * ::* : : .*:*. * : * **::**::	
Bos taurus	KSTELLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEACEAYLVGLFEDTNLCAIH 113	
Homo sapiens	KSTELLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEACEAYLVGLFEDTNLCAIH 113	
Xenopus laevis	KSTELLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEASEAYLVGLFEDTNLCGIH 113	
Arapodopsis thaliana	KSTELLIRKLPFQRLVREIAQDFKTDLRFQSSAVAALQEAAEAYLVGLFEDTNLCAIH 113	
C. elegans	KSTELLIRRAPFQRLVREIAQDFKTDLRFQSSAVMALQEAAEAYLVGLFEDTNLCAIH 113	
	KSTDLLIRKLPFQRLVREIAQDYKTDLRFQSSAVMALQEAAEAYLVGLFEDTNLCAIH 113	
	KSTELLIRKLPFQRLVREIAQDFKTDLRFQSSAIGALQESVEAYLVSLFEDTNLAAIH 113	
D. discoldeum	KSTDLLIRKLPFQRLVREIAQEFKTDLRFQSAAIGALQEASEAYLVGLFEDTNLCAIH 116	
	KSTDLLIRKLPFSKLVRDIVTSGLSKSDIRFQGAAVEALQESAENYIISLFVDTQLCAEH 116	
i yrpanosoma bruceli	RSTDLLLQKAPFQRLVREVSGAQKEGLRFQSSAILAAQEATESYIVSLLADTNRACIH 110	
	:**:**::: **.:***:: * .:*:*: * **: * *::.*: * **: . *	
Pos tourus		
Homo saniens	AKRVTIMPKDIQLARRIRGERA 135	
Yenopus laevis	AKRVTIMPKDIQLARRIRGERA 135	
Aranodonsis thaliana	AKRVTIMPKDIQLARRIRGERA 135	
C elegans	AKRVTIMPKDIQLARRIRGERA 135	
Plasmodium falcinarum	AKKVTIMPKDIQLAKKIKGEKA 135	
Saccharomyces cerevisiae	AKRVTIMPKDIQLARRIRGERS 135	
D discoideum	AKKVTIQKKDIKLARKLRGERS 135	
Giardia Iamhlia	AKRVTIMPKDIHLARRIRGERS 138	
	AKRVTIMKPDMELATRIGKRIEPEYRKGK 145	

: **** *:.** : .

Tyrpanosoma bruceii SGRVTIQPKDIHLALCLRGERA----- 132

Figure S4. Multiple Histone H3 sequence alignment

Core histone H3 amino acid sequence alignment indicating the lack of conservation of lysine at position 42 in higher eukaryotes.

GENESDEV/2011/ 166025 Hyland_Fig S5

K42L (22 rotamers) K42M (10 rotamers)

Figure S5. 42 = red, DNA = blue. Histone H3 = green/yellow) Shown for each is the rotamer with the greatest energy minimization out of the total number of rotamers possible for the substitution. All graphics were generated using Swiss PDB viewer except that displaying histone H3 K42me2 which was generated in PYMOL. The nucleosome pdb file 11D3 was amended to include the dimethyl group at H3 K42, courtesy of Michael S. Cosgrove.

GENESDEV/2011/166025 Hyland_Fig S6

Figure S6 Analysis of RNA length changes in H3 K42A cells spanning two loci. Integrated genome browser screen shot of Log_2 WT (grey) and H3 K42A (maroon) RNA levels, as well as the differential RNA levels (Log_2 K42A/WT) (blue) for a segment of chromosome 10 spanning *YJL144W* and *YJL143W*. The red and black bars represent RNA length change calls made by the method. In this particular bridging event, the differential signal could represent both 5' extensions (red segment) and 3' extensions (black segment) events at both loci.